Titel: | Ueber Meßinstrumente mit constanten Winkeln (Linsen- und Prismenporrhometer). Von Dr. Hermann Schlagintweit aus München. |
Autor: | Dr. Hermann Alfred Rudolph Schlagintweit [GND] |
Fundstelle: | Band 112, Jahrgang 1849, Nr. LXXIV., S. 334 |
Download: | XML |
LXXIV.
Ueber Meßinstrumente mit constanten Winkeln
(Linsen- und Prismenporrhometer). Von Dr. Hermann Schlagintweit aus München.
Mit Abbildungen auf Tab.
VI.
Schlagintweit über Meßinstrumente mit constanten
Winkeln.
Einleitung.
Das Bedürfniß nach einem genauen aber möglichst compendiösen Meßinstrumente bei den
Gletscherstudien, welche ich mit meinem Bruder (Adolph) unternahm, leitete mich auf
den Versuch, in die Construction der Meßinstrumente ein neues Princip einzuführen,
nämlich statt der veränderlichen Winkel einige wenige aber constante
einzuführen.
Bei jenen Messungen nämlich, mit dem Theodoliten, dem Astrolabium, Spiegel-
und Prismenkreisen etc. und den übrigen Instrumenten, denen getheilte
Horizontal- und Verticalkreise zu Grunde liegen, werden die gesuchten
Dreiecke dadurch bestimmt, daß man von einer gegebenen bekannten Standlinie
ausgehend, die Winkel mißt und dann mit Hülfe der trigonometrischen Tabellen die
übrigen Stücke des Dreieckes berechnet. Bei jenen beiden Instrumenten jedoch, deren
Beschreibung den Gegenstand dieser Abhandlung bildet, ist die Methode der Bestimmung
eine etwas verschiedene. Wir haben zwar in dem einen dieser Instrumente, nämlich im
Prismenporrhometer, einen getheilten Kreisbogen, der auf 4' ablesbar ist; er ist für
manche Nebenarbeiten sehr bequem, im Ganzen aber für den Gebrauch des Instrumentes
unwesentlichIch bitte darüber weiter unten nachzusehen. und das Linsenporrhometer hat selbst diesen nicht. Beim Gebrauch beider
Instrumente bleibt uns die Wahl zwischen 5 bis 9 Winkeln, deren Größe wir mit
möglichster Schärfe kennen. Wir nehmen von diesen in einem gegebenen Fall jenen, der
uns als der passendste erscheint, und suchen nun unsere Entfernung vom Gegenstand so
groß zu machen, daß derselbe unserem Auge genau unter dem ausgewählten Winkel
erscheint. Ist in dem Dreiecke, welches auf diese Weise entsteht, der 2te Winkel ein
rechterIn beiden Instrumenten ist dafür gesorgt, die Construction der Perpendikel
vollziehen zu können., so ist dieses Dreieck trigonometrisch in all seinen Theilen bestimmt. Geben
wir ferner jenen Winkeln, welche wir in unseren Instrumenten als die constanten herzustellen
suchten, eine Größe welche ein sehr einfaches Verhältniß der Katheten eines
rechtwinkeligen Dreieckes bedingt, so wird der Gebrauch des Instrumentes sehr
bequem.
Fig. 1, Bd. 112, S. 335
Haben wir z.B. eine senkrechte Linie zu messen, so suchen wir eine Entfernung von
derselben zu finden, von welcher aus diese Linie uns genau unter dem gewählten
Winkel erscheint. Heißen wir Fig. 1
Bei der Bezeichnung der Figuren wurden so viel als möglich die gleichen
Buchstaben gewählt, und zwar folgende:
AB für die zu messende Linie. P = Standpunkt des Porrhometers. F = Fußpunkt des Beobachters. O = Auge. SSSS = Standebene. – Jene Figuren, welche den Gang der
Lichtstrahlen durch Linsen oder Prismen nachzuweisen hatten, wurden mit
weißen Linien auf schwarzem Grunde gezeichnet. diesen Winkel n, und sollen für diesen die
Tangenten sich verhalten wie 2 zu 1, so dürfen wir in diesem Falle nur unsere
Entfernung vom Gegenstand mit der Schnur oder Kette messen, und die erhaltene
Länge mit 2 multipliciren, um die Größe der zu messenden Senkrechten zu
erhalten.
Dieses ist, in Kürze angegeben, die Methode, welche wir beim Gebrauch unserer
Instrumente befolgt wissen möchten. Das Princip, welches beiden Instrumenten zu
Grunde liegt, ist ganz dasselbe, so verschieden auch ihre äußeren Formen sind.
Wir haben diese Instrumente PorrhometerMit „Distanzmesser“ verbindet man bekanntlich einen
andern Begriff, deßhalb vermieden wir diese Bezeichnung. (ποῤῥώμετρον)
d.h. Entfernungsmesser genannt; man könnte das erste als Linsen-, das zweite
als Prismenporrhometer bezeichnen.
Ehe wir im einzelnen auf Construction und Anwendung eingehen, wollen wir sehen, wie
sich bei der Vergleichung unserer Instrumente mit den gewöhnlichen Meßinstrumenten
Vortheile und Nachtheile gegenüber stehen.
Der erste und wesentliche Vortheil für uns ist die bequeme einfache Form der
Porrhometer. Das Linsenporrhometer ist ein Cylinder von 3 P. Zoll Durchmesser und
2,9 P. Zoll Höhe; das Prismenporrhometer hat kaum 2,5'' im Durchmesser und eine Höhe
von 1,4'' (Gewicht 10 Loth!).
Ungeachtet dieser außerordentlich kleinen Dimensionen hat jedes unserer Instrumente
eine Genauigkeit bis 1'. Die Fehlergränzen unserer Instrumente sind demnach:
da tg. 1' = 0,00029089
für eine Entfernung des Gegenstandes
von 10 Fuß = 0,0029089 Fuß,
von 50 Fuß = 0,0145445 Fuß,
von 100 Fuß = 0,0290890 Fuß,
von 500 Fuß = 0,1454450 Fuß,
von 1000 Fuß = 0,2908900 Fuß.
Da Entfernungen von 1000 Fuß für terrestrische Gegenstände und für Meßinstrumente
ohne Fernröhren schon eine bedeutende ist, so können wir die Genauigkeit von einer
Minute wohl als hinreichend ansehen.
Beim Gebrauche der Porrhometer haben wir ferner nur eine einzige Linie zu messen; die
übrigen Linien lassen sich leicht durch kleine arithmetische Functionen finden;
trigonometrische Tafeln und die damit verbundenen Berechnungen sind dabei
überflüssig. Nur in ganz speciellen Fällen können wir uns auch für diese Instrumente
der Tafeln bedienen. Dahin rechne ich zum Beispiel die Aufgabe, Winkel aus ihren
gefundenen Functionen, z.B. den Fall einer schiefen Ebene zu bestimmen. In den
meisten dieser Fälle genügt es, diese Functionen selbst anzuführen; wir sagen
demnach mit gleicher Verständlichkeit, eine Ebene hat 1' Fall auf 10' Länge, als sie
hat 5° 40' Neigung.
Mit dem Prismenporrhometer können wir ohnehin Winkel indirect bis zu einer
Genauigkeit von 4' bestimmen.
Unvermeidlicher sind die Tabellen, wenn wir die Instrumente zu
Triangulations-Operationen gebrauchen, was wir besonders beim
Prismenporrhometer unbeschadet der Genauigkeit thun können. Für diesen Zweck vor
allem ward eine Tabelle (Tab. IV.) der Sinuse und Tangenten angefügt. Ich habe die
Functionen selbst, nicht ihre Logarithmen angegeben, weil für unsere Fälle die
Genauigkeit auch nichtlogarithmischer Rechnungen hinreicht.
Ein Einwurf gegen unsere Instrumente könnte ferner darin gesucht werden, daß das
Messen einer nicht willkürlich gewählten, sondern durch die Localverhältnisse
bedingten Linie nicht selten schwierig auszuführen sey; ich glaube es sind auch von
dieser Seite wenige Hindernisse zu erwarten, da eine besondere Einrichtung unseres
Instrumentes es möglich macht, von größern Linien nur sehr kleine Theile zu messen.
(Besonders günstig ist auch in dieser Beziehung das Prismenporrhometer.)
Zu den Nachtheilen unserer Instrumente gegenüber dem Theodoliten und allen ähnlichen,
wenn sie mit Fernröhren versehen sind, gehört die geringere Schärfe im Einstellen.
Doch kann mit einiger Uebung die Genauigkeit von 1' sicher erreicht werden; im Auge
liegt bei mäßig gutem Gesicht kein Hinderniß, da z.B. nach Huek's BeobachtungenRudolph Wagner's
Handwörterbuch der Physiologie, Lief. 14, S. 331. ein schwarzer Punkt auf weißem Grunde noch unter einem Winkel von 2,6''
sichtbar war.
An ein Tascheninstrument wie das unserige wird man ohnehin
keine Forderungen stellen wie an den Theodoliten, ein Instrument, welches an Masse
und Gewicht, an Umständlichkeit der Handhabung und des Transportes, an Kostenaufwand
etc. auch ungleich größere Schwierigkeiten dem Beobachter entgegenstellt. Für à-la vue-Aufnahmen, für Gegenstände
von mäßiger Entfernung, als ausschließliches Reise- und Tascheninstrument für
Naturforscher, besonders Geologen, für Forstleute, Officiere, Techniker etc. wird
es, wie ich hoffe, obgleich das compendiöseste seiner Art, doch hinlänglich
praktische Geltung erlangen.
A.Das Linsenporrhometer.
I. Construction.
Textabbildung Bd. 112, S. 337
Seine Theile sind folgende: (Fig. 2.)
I. Eine kleine Ocularplatte (a¹) mit einer
kreisrunden Oeffnung (b¹) im Centrum von
1''' Durchmesser (ohne Glas), welche durch eine Platte (c¹) verschlossen werden kann, um das
Eindringen von Staub zu verhindern.
II. Das Mittelstück. Dieses besteht aus einem kleinen (a²) und einem größeren Cylinder (b²) und aus einer Metallplatte in der Mitte (c²).
Der kleinere Cylinder von 11''' Länge, 14''' DurchmesserAlle Angaben beziehen sich auf das Pariser Duodecimalmaaß. trägt am hintern Ende durch ein Gewinde den Oculartheil. Am vordern ist
sein Rand etwas nach außen umgebogen, um ein vollständiges Herausziehen aus dem
dickeren Cylinder zu verhindern. An seiner äußeren Fläche trägt er fünf
kreisrunde Striche, welche mit 0,5, 1 und 2 bezeichnet sind; dieß sind die
Einstellungsmarken.
Dieser Cylinder geht in einer Metallplatte (2 c) von
2'' 5,5''' Durchmesser auf und nieder. Um ihm da eine senkrechte Stellung zu
sichern, ist die
runde Oeffnung dieser Platte mit einem kleinen Cylinderchen (d³) von 2 Linien Länge ausgefuttert; eine
größere Länge dieses Cylinders würde nur die Reibung unnöthig vermehren; auch
wurde dadurch das möglichst vollständige Ausziehen des Ocularcylinders, oder das
tiefe Eindrücken desselben nach dem Gebrauche verhindert; beides würde das
Instrument unnöthig vergrößern. Am äußeren Rande muß der kleinere Cylinder in
der Platte möglichst eben geschliffen seyn, um die Einstellungslänge mit
Genauigkeit anpassen zu können. Der größte Cylinder am ganzen Instrumente ist
jener, welcher die Metallplatte mit dem Objectivtheile verbindet. Er hat
1'' 7''' Länge,
2'' 4,9''' Durchmesser,
und trägt an beiden Enden nach innen die verbindenden
Schraubengänge. Alle Cylinder sind an der inneren Seite mit einem schwarzen,
glanzlosen Kienrußpigmente überzogen, um Lichtreflexe im Innern zu
vermeiden.
III. Der Objectivtheil ist jener, welcher die beiden Gläser enthält; ein kleiner,
flacher Cylinder (a³); nach hinten ist er
gerade, nach vorne ist seine äußere Fläche so weit ausgeschnitten (b³), daß beim Gebrauch des Instrumentes das
innere Ende nicht gesehen werden kann. In seiner Mitte befindet sich ein kleiner
vorspringender Rand, welcher die Gläser trägt (c³). Diese sind:
1)
ein Concavglas (d³)
von
2,7'' Durchmesser,
7,02'' Krümmungsradius (6,62'' Brennweite).
2) Ein Planglas (e³) vor dem Concavglas.
Diesem sind auf der vorderen, dem Concavglase nicht zugekehrten Seite folgende
Linien eingeritzt:
1.2.3.
ein Kreis von 2,27 26''Den Durchmessern wurde deßwegen die möglichste Schärfe gegeben,
weil ich anfangs glaubte nur eine
Einstellungslinie zu bekommen. Da aber eine Linse für jeden
neuen Winkel eine neue Einstellungslinie fordert, so können
zugleich kleine Ungenauigkeiten in der Länge der Durchmesser
empirisch corrigirt werden.ein Kreis von 1,59 13''ein Kreis von
0,93 16''
Durchmesser.
(alle drei sind concentrisch);
4.
zwei auf einander rechtwinkelige Durchmesser,
welche bis an die Peripherie des größten Kreises
ausgezogen sind.
IV. Der Deckel ist, wie bei den gewöhnlichen Fernröhren, mit elastischen Wänden
versehen; bei der großen vorderen Oeffnung und dem geringen Durchmesser des
Concavglases in der Nähe des Centrums ist er keineswegs unwesentlich.
Ist das Instrument zusammengesetzt, so werden alle Schrauben fest eingerieben, um
zufällige Verschiebungen möglichst zu verhüten; dann führt man über die
Vereinigungslinie von je zwei Schrauben einen kleinen senkrechten Schnitt. Bei
dem Auseinanderlegen und Wiederzusammensetzen des Instrumentes müssen die beiden
Theile dieser Einschnitte wieder genau in einer Linie liegen als Kriterium für
den normalen Stand der Schrauben; wären die Schrauben zu wenig, oder zu
gewaltsam eingerieben, so würde dieß immer eine Aenderung im senkrechten
Abstande des Ocularausschnittes von den Gläsern des Objectives zur Folge haben,
was eine nicht unbedeutende Fehlerquelle werden könnte.
Zur Construction des Instrumentes gehört noch die Bestimmung der
Einstellungslinien am kleinen Cylinder. Um den normalen senkrechten Abstand des
Ocularausschnittes von dem Objectivtheil zu finden, wird ein Theodolit benutzt.
Man wählt am besten einen solchen, dessen Horizontalkreis noch auf
10'' ablesbar ist.
Man sucht nun mit dem beweglichen Fernrohr zwei Gegenstände in mäßiger
Entfernung, etwa 300–400', welche deutliche Bestimmungspunkte bieten, und
vom Standpunkte des Beobachters gesehen, um einen Winkel von
63° 26' 6''
auseinander liegen.
Dann wird der kleine Cylinder des Instrumentes so weit ausgezogen, bis die
gewählten Punkte an den beiden Gegenständen genau mit den Enden des größten
Durchmessers zusammenfallen, wenn man das Porrhometer über den Theodoliten hält;
um diesen Stand des kleinen Cylinders später wieder herstellen zu können, macht
man rings um denselben hart an der Kante des kleinen Reifes, von dem er umgeben
und gehalten wird, eine kreisförmige Marke und bezeichnet sie mit
„2“.
Auf dieselbe Weise wird mit dem Theodoliten ein Winkel von 45° gesucht;
der kleinere Cylinder in den größern eingeschoben, bis die Enden als Durchmesser
im mittleren Kreise mit den Gränzen dieses Winkels zusammenfallen. Auch hier
macht man eine Marke und bezeichnet sie mit
„1“.
Der dritte Winkel von
26° 33' 54''
muß auf dieselbe Weise mit dem Durchmesser des dritten
Kreises coincidiren; jener Einstellungsstrich, der ihm entspricht, wird mit
„0,5“
bezeichnet.
Wir stellten dann auf ähnliche Weise einen Winkel her, den wir mit
„0,5“, einen anderen den wir mit
„2,5“ bezeichneten; von diesem im Capitel über die
Anwendung.
Bei der Aufstellung und Benutzung des Theodoliten darf das Versicherungsfernrohr
als Bürge für den unveränderten Stand während des ganzen Versuches nicht
vergessen werden. Mit genauem Nivelliren des Horizontalkreises braucht man sich
nicht lange aufzuhalten, da es für unsern Zweck gleichgültig ist, ob die
betreffenden Winkel in einer senkrechten oder in einer etwas geneigten Ebene
liegen. Der Theodolit, welchen ich benutzte (von Fraunhofer, Uzschneider und Liebherr), war
mit seinem Nonius von 10 zu 11 Secunden ablesbar. Ich wählte daher statt
63° 26' 6''
63° 26' 11''
und statt
26° 33' 54''
26° 33' 50''
eine Differenz, welche zu klein ist, um praktische
Berücksichtigung zu verdienen.
Mein Linsenporrhometer wurde im optischen Institut von Merz und Söhne in München mit der
anerkannten Sorgfalt und Genauigkeit dieser Anstalt verfertigt.
Bei vielen einleitenden Versuchen und manchen provisorischen Apparaten, sowie bei
der Verfertigung und der Controle beider Instrumente unterstützte mich Hr. Dr. Ludwig Merz auf das
zuvorkommenste, wofür ich ihm ungemein verbunden bin.
II. Anwendung.
Beim Gebrauch dieses Porrhometers müssen die Durchmesser als einzelne Linien und
jene Dreiecke betrachtet werden, deren Spitze in unserem Auge liegt, deren Basis
die Durchmesser des größeren, mittleren und kleineren Kreises bilden.
Die geraden Linien als solche leisten bei der Verlängerung von Geraden gute
Dienste und sind als Hülfslinien bei der Construction der Perpendikel zu
gebrauchen.
Auch die gleichschenkligen Dreiecke, welche ich oben angeführt, stehen, wenn man
sie als gleichschenklige benutzt, noch nicht in unmittelbarer Beziehung zu den
Hauptaufgaben dieses Instrumentes; sie erleichtern vorzüglich die Construction
der Perpendikel und unterstützen die Lösung einiger anderer constructiver
Fragen, meist von untergeordnetem Werthe.
Dieselbe wollen wir erst weiter unten, bei der Behandlung specieller Fälle
betrachten, um Wiederholungen zu vermeiden.
Bei weitem das wichtigste, die Basis fast aller Operationen mit dem Porrhometer,
sind die Winkel, welche an der Spitze dieser Dreiecke liegen. Stellt man nämlich
das Instrument auf die Marke „2“ ein und sucht jenen
Winkel, dessen Schenkel durch die Endpunkte des einen Durchmessers im größten
Kreise gehen und im Auge des Beobachters sich schneiden, so ist der so gebildete
Winkel
= 63° 26' 6'',
wie aus dem Mechanismus der Construction schon
aposteriorisch hervorgeht.
Eben so ist, wenn der kleine Cylinder des Instrumentes am Einstellungsstrich
„1“ steht, der Winkel der durch den Durchmesser des
mittleren Kreises bestimmt ist,
= 45°
und jener der dem Durchmesser des kleinsten Kreises
gegenüber liegt
= 26° 33' 54''.
Jeder dieser drei Winkel, wenn er in einem rechtwinkligen Dreiecke vorkömmt,
bedingt ein sehr günstiges, einfaches Verhältniß der Katheten zu einander.
Ist nämlich in einem rechtwinkligen Dreieck ein Winkel
= 63° 26' 6'',
so verhält sich die gegenüberliegende Kathete zur
anliegenden
= 2 : 1.
In einem rechtwinkligen Dreiecke, wo beide Winkel
= 45°
sind, verhalten sich die beiden Katheten
= 1 : 1.
Wenn der eine Winkel
= 26° 33' 54'',
so ist ihr Verhältniß
= 1 : 2.
Tragen wir diese Gesetze, deren Begründung ich mir für die mathematischen
Entwickelungen des nächsten Abschnittes versparen will, auf einen praktischen
Fall über, so mögen sie sich ungefähr wie folgt anwenden lassen. Wählen wir den
einfachsten Fall, nämlich eine senkrechte Linie zu messen. Wir stellen das
Instrument so, daß der untere Schenkel des Visionswinkels möglichst horizontal
liege, um dadurch die Eigenhöhe des Beobachters, oder besser seines
Instrumentes, nicht in Rechnung bringen zu müssen.
Textabbildung Bd. 112, S. 342
Dann nähert man sich dem Gegenstande so lange, bis bei
eingestellter betreffender Marke die Linie AB'
,
Fig. 3,
mit dem Durchmesser eines Kreises zusammenfällt, oder, was dasselbe ist, bis wir
den Gegenstand unter einem Winkel von
63° 26' 6''
oder
45°
oder
26° 33' 54''
sehen; es verhält sich dann
AB' : AP
die Höhe des Gegenstandes zu unserer Entfernung
= 2 : 1
= 1 : 1
= 1 : 2
d.h. der gemessene Gegenstand ist im ersten Falle zweimal
so groß als unsere Entfernung; im zweiten Falle eben so groß und im dritten
Falle 1/2mal so groß.
Ist die Entfernung als die zugängliche Linie direct gemessen, so kann man mit der
einfachsten Multiplication die Höhe von AB
' finden:
B'P = BF
folglich
AB = A
B' + B
B'
= P
F + B
F
= der Summe aus unserer Entfernung vom Gegenstand und der
Höhe des Porrhometers, wobei B
'
P als horizontal angenommen wurde.Ueber das Horizontalstellen dieser Linie siehe unten praktische
Fälle.
Neben den Linien, welche in verticalen Ebenen vorkommen, sind es jene der
Horizontalebenen, welche am häufigsten vorkommen. Auch von diesen wollen wir
hier einen ganz allgemeinen Fall provisorisch erklären.
Textabbildung Bd. 112, S. 343
Es sey (Fig.
4) in der Ebene ss die Linie AB zu messen. Der Beobachter nähert sich auch
dießmal der Linie so lange, bis sie mit einem Durchmesser zusammenfällt, wobei
das Einstellen des Instrumentes auf jene Marke, welche dem betreffenden
Durchmesser entspricht, nicht vergessen werden darf. Hat man diesen Standpunkt
in F gefunden, und denselben zugleich so gewählt,
daß PA
, die Linie vom Auge des Beobachters zur Linie AB
, senkrecht auf AB
stehe, so wird der Winkel amb dem benützten
Winkel des Instrumentes genau entsprechen; das Verhältniß von AP zu AB ist
somit gefunden.
AP kann zwar nicht direct gemessen, aber sehr
leicht durch Rechnung gefunden werden,
AP² = PF² + AF²,
weil AP die Hypotenuse
des rechtwinkligen Dreieckes
APF ist,
AP = √(FP² + AF²,)
wobei AF die Entfernung
des Standpunktes des Beobachters von dem Punkte A,
OF die Höhe des Instrumentes bedeutet.
Will man an den Endpunkten der Linie verticale Stangen aufstellen lassen, welche
mit uns von einer Höhe sind, und auf diese visiren, so kann man sich auch diese
Wurzelausziehung ersparen.Durch eine Tabelle im praktischen Theile können wir obige
Wurzelextraction durch eine ganz einfache Substitution ersetzen.
Textabbildung Bd. 112, S. 343
Es wird nämlich (Fig. 5):
a'b' = ab
a'P = aF,
folglich verhält sich
a'P : a'b'
= a'P
: ab
= aF : ab.
III. Mathematische
Begründungen.
Unsere Aufgabe bei der Berechnung dieses Instrumentes war, Winkel herzustellen,
welche in einem rechtwinkeligen Dreiecke vorkommend, die einfachsten Tangenten
bedingten. Wir wählten als solche die Verhältnisse der Katheten gleich
1 : 2
1 : 1
2 : 1.
Die entsprechenden Winkel sind dann:
26° 33' 54''
45°
63° 26' 6''.Diese Entwickelungen gelten auch als Basis für die constanten Winkel des
Prismenporrhometers.
Denn sind die Tangenten eines rechtwinkligen Dreieckes = 1, so ist der jeder
Kathete gegenüberliegende Winkel = 45°.
Verhalten sich die beiden Katheten = 1 : 2, so ist für den der größeren Kathete
gegenüberliegenden Winkel (Fig. 6.)
Textabbildung, Bd. 112, S. 344
AB/BC = 2 = tg n
log. 2 = log. tg n
0,301
0300
=
log. tg
n
300
9994
n = 63° 26' 6''
0306
–––––
52,67
=
6.
Für jenen Winkel, welcher der kleineren Seite gegenüber liegt
ist n = 26° 33' 54''.
Um diese Winkel bei unsern Messungen benützen zu können, mußten sie dargestellt
werden als Theile von Dreiecken, welche wir in jedem Augenblick wiederherstellen
konnten.
Ein Dreieck wird bestimmt durch drei Punkte, oder was dasselbe, durch die beiden
Endpunkte einer Linie und einen Punkt außerhalb derselben. Für unser Instrument
ist dieser dritte Punkt die Stelle, an welcher das Auge des Beobachters steht;
genauer ausgedrückt, die Kreuzungsstelle der Gesichtslinien im Auge nach Listing und Volkmann.Man vergleiche den oben citirten Aufsatz von Volkmann in Rudolph Wagner's physiol. Handwörterbuch.
Die Linie mußte von diesem Punkte nahe an 3,5 Par. Zoll abstehen, weil diese
Entfernung der Gränze der deutlichen Sehweite schon sich nähert.
Sie konnte gegen den Standpunkt unseres Auges eine solche Stellung einnehmen, daß
ihr Endpunkt mit dem letztern Punkt durch gerade Linien verbunden, entweder ein
rechtwinkliges oder ein gleichschenkliges Dreieck bildet. Die erstere Form
setzte zwar dem Gebrauch des Instrumentes durchaus keine Hindernisse entgegen,
aber die äußere Gestalt eines Instrumentes, dessen verticaler Durchschnitt ein
rechtwinkliges Dreieck ist, bleibt immer unbequem und unschön. Wir wählten daher
die Stellung der Linie so, daß ihre Endpunkte mit dem Augenpunkte verbunden, ein
gleichschenkliges Dreieck bildeten, und der geforderte Winkel der Winkel an der
Spitze dieses Dreieckes war.
Soll derselbe in einem gleichschenkligen Dreieck
63° 26' 6''
betragen, so verfährt man, um die Größe von BC für die senkrechte Entfernung A
D = 4 Par. Zoll zu finden, auf folgende Weise:
Fällt man von A ein Perpendikel AD auf die Grundlinie, so ist der Winkel
BAC
halbirt, mithin
BAD = CAD = 31° 43' 3''.
Auch BC ist halbirt; folglich
BD = CD = BC/2
BD/AD =
BD/4 = tg
31° 43' 3''
log. BD
– log. 4 = log.
tg 31° 43' 3''
log.
BD
=
9,7909987
141
= 3.47,08
0,6020600
–––––––––
0,3930728
0660
–––––––––
68
BD
=
2,47213
2 BD = BC
=
4,94426 Par. Zoll.
Will man ein gleichschenkliges Dreieck berechnen, dessen Winkel an der Spitze
45° beträgt, so kann man entweder die soeben gefundene Grundlinie
unverändert beibehalten, und die Entfernung derselben vom Auge trigonometrisch
bestimmen, oder man kann die letztere Linie als constant annehmen, und auf der
eben gefundenen ein Stück so abgränzen, daß es die Basis eines gleichschenkligen
Dreieckes wird, dessen Höhe 4 Par. Zoll, dessen Winkel an der Spitze
45° beträgt.
Die zweite Construction verdient den Vorzug, weil durch das Vergrößern der
Entfernung vom Auge das Instrument ohne Nutzen bedeutend an Umfang zunehmen
müßte.Daß wir demungeachtet anderer Einstellungsstriche, mithin auch andere
Entfernung der einzelnen Kreise wählen mußten, wird im Capitel über das
Concavglas erläutert werden.
Textabbildung Bd. 112, S. 346
Da das bereits gefundene Dreieck, ebenso die folgenden gleichschenklig sind und
ihre Spitzen (Fig. 7) im Auge des Beobachters zusammenfallen, so müssen auch die
Halbirungspunkte der größeren und der kleineren basischen Linien
zusammenfallen.
Halbiren wir nun auch im zweiten Dreieck EAF
den Winkel bei A, so erhalten wir
EAD = FAD = 22° 30'
ED ist dann = 1,65685
2 ED = EF = 3,31370.
Im dritten Dreieck AGH ist der halbirte
Winkel
= 13° 16' 57'', also
DG = 0,94427
2 GD = GH = 1,88854.
Um diese Linien von einander abzugränzen, sollten sie als Durchmesser von drei
concentrischen Kreisen auftreten, allein wegen ihrer großen Dimensionen (die
größte beträgt nahe an 5 Par. Zoll) wären sie nur sehr schwer auszuführen
gewesen.
Ueberdieß wäre das Porrhometer mit einer basischen Linie von 4,9 Par. Zoll sehr
groß geworden. – Setzte ich aber vor das Mikrometer ein Concavglas, dessen
negative Vergrößerung beispielsweise = 2 seyn soll, so werden dadurch die
Winkel, unter welchen uns die Gegenstände erscheinen, auf die Hälfte reduciren;
die basischen Linien brauchen demnach nur den Hälften der früher angegebenen zu
entsprechen.
Betrachten wir den schematischen Durchschnitt unseres Instrumentes jetzt, so ist
der Winkel (Fig.
7)
BAC = 63 26' 6''/2 = 31° 43' 3''
EAF = 45/2 = 22° 30'
GAH = 26° 33' 54''/2 = 13° 16'
57''
Fällen wir nun das gemeinschaftliche Perpendikel AD und berechnen BC EF GH für die
neu erhaltenen Winkel auf ähnliche Weise wie vorher, so haben wir im
Dreiecke
ABC : BD =
1,13630
2 BD = BC = 2,27263; im Dreiecke
EAF : DE =
0,79565
2 DE = EF = 1,59130; im Dreiecke
GAH : DG =
0,465788
2 DG = GH = 0,931576.
Außer den eben gefundenen Durchmessern kann man die Radien zu Messungen benützen.
Ihnen entsprechen nämlich, wie aus den vorausgegangenen Erläuterungen von selbst
klar ist, gerade die Hälften jener Winkel, welche den Durchmessern gegenüber
liegen, wenn auch der betreffende Radius von demselben Einstellungsstriche aus
betrachtet wird, der dem Durchmesser gegolten.
Wollen wir jetzt die Eigenschaften der Radien etwas näher durchgehen.
Die Linien BD ED GD sind die Katheten in den
rechtwinkligen Dreiecken, welche die Hälften der oben betrachteten
gleichschenkligen Dreiecke; die gemeinschaftliche zweite Kathete ist AD.
Setzen wir diese gleich 1, und betrachten wir das Dreieck BAD, dessen Winkel bei A
= 31° 43' 3''
= 63° 26' 6''/2
ist, so finden wir
BD/1 = tg
31° 43' 3''
log.
BD
=
log. tg 31° 43' 3''
log.
BD
=
9,790 9987
BD
=
0,6181
also
BD : AD
=
0,6181 : 1
AD : BD
=
1,62 : 1.
Man sieht, daß es nicht unmöglich wäre, durch Verkürzung der Linie AD, oder was dasselbe ist, durch Annäherung
des Ocularausschnittes an das Objectivglas mittelst Eindrücken des kleinen
Cylinders, dieses Verhältnis in
1,5 : 1
umzuwandeln; eine Form, welche in der Folge, wie schon
jetzt leicht einzusehen, nicht ganz unbrauchbar seyn wird. Diese Umänderung wird
leicht herbeigeführt, wenn wir jenen Winkel suchen, der dem Verhältnisse der
Katheten 1/1,5 oder 2/3 entspricht.
Die logarithmischen Tabellen nennen uns den Winkel
23° 41' 24'',
der mit dem Theodoliten eingestellt, und dann am
Instrumente mit der Marke „1,5“ bezeichnet wurde..Das Sternchen bei den Einstellungsnummern bedeutet, daß diese Zahlen sich
auf die Benützungen der Radien beziehen.
Betrachten wir auf ähnliche Weise den Winkel, welcher von dem Einstellungsstriche
„1“ aus dem Radius des mittleren Kreises gegenüber
liegt. Wir wissen er beträgt
22° 30'.
Setzen wir wieder AD = 1, so ist
ED/1 = tg 22° 30'
ED = 0,41421
ED : AD =
0,41421 : 1
AD : ED
– 2,49... : 1.
Auch dieses Verhältniß ist leicht in ein rationales, nämlich in das von 2,5 : 1
umgewandelt worden.
Auch dießmal kann das Instrument nicht auf der Marke „1“
stehen bleiben, sondern muß bis auf „2,5“ ausgezogen
werden.
Der Tangente 2 1/2 entspricht ein Winkel von
21° 48' 5''
welcher mittelst des Theodoliten der Bestimmung dieser
Marke zu Grunde gelegt wurde.
Wichtiger noch als diese beiden Radien wird uns der Radius des kleinsten Kreises
erscheinen. Hier fanden wir
GD/1 = tg
13° 16' 57''
GD = 0,23606
GD : AD =
0,23606 : 1
AD : GD =
4,2 ... : 1.
Eine kleine Verschiebung macht es hier möglich, das Verhältniß zwischen
Entfernung vom Gegenstand und seiner Größe = 4 : 1 ... herzustellen.
Wegen einiger Eigenschaften des Concavglases ist es bei näher gelegenen
Gegenständen ungemein wünschenswerth, dem Objecte der Messung nicht zu nahe zu
kommen. Die Röhren werden dießmal in einander geschoben, da die Achse um 2/10
des Radius des kleinsten Kreises, also etwa um
(0,466 . 2)/10 = 0,0932 Par. Zoll
verkleinert werden muß.
Der Winkel, welcher einer Tangente gleich 1/4 entspricht, ist
14° 4' 4''.
Ehe ich diese constructiven Rechnungen schließe, will ich noch darzustellen
versuchen, wie die Dimensionen der einzelnen Theile unseres Instrumentes gewählt
werden mußten, um ihm die möglichst compendiöse Form zu geben.
Als leitende Anhaltspunkte dienten uns das Maximum und Minimum der Höhe, auf
welche das Instrument eingestellt werden mußte. Wollten wir sie dadurch
bestimmen, daß wir sie jetzt am fertigen Instrumente durch directes Messen
finden, so wird dieß ein Cirkelschluß; seine Unrichtigkeit sieht man am besten
daraus, daß bei der ursprünglichen Anlage des Instrumentes, von dieser Art zu
schließen natürlich nicht die Rede seyn konnte.Auch die Winkel gelten, wie wir im nächsten Capitel sehen werden, nur für
nicht zu kleine Entfernungen. Wir fanden dort die Höhe wie folgt:
Setzen wir die Verkleinerung des Concavglases für Gegenstände in nicht zu großer Nähe =
1,8 und gelte uns (Fig. 8) im Dreieck
BAC der Winkel bei A als der größte Visionswinkel unseres Instrumentes, der dem Winkel
βα
γ = 63° 26' 6'' entspricht, jetzt aber
wegen 1,8maliger Verkleinerung nur mehr 35° 14' 30'' beträgt.
Textabbildung Bd. 112, S. 350
BD sey als der
Radius des größten Kreises im Planglase des Porrhometers = 1,14''. –
Somit können wir AD berechnen. –
Der Winkel bei A ist durch das Perpendikel AD halbirt, folglich der Winkel
BAD = 17° 37'
15''
BD/AD
= 1,13630/AD = tg 17° 37' 15''
AD = 3,5839.
Da die Verkleinerung etwas größer als 1,8 ist, so ist die gefundene Zahl noch
etwas mehr als das Maximum, und kann daher allen Folgerungen über die
Dimensionen des Instrumentes zu Grunde gelegt werden. – Die Höhe von 3,6
Par. Zoll wurde dadurch bequemer gemacht, daß wir zwei Cylinder wählten, welche
in einander verschiebbar waren. Die Dimensionen dieser sowie aller anderen
Theile des Instrumentes wurden der sorgfältigsten Berechnung unterworfen, um die
möglichst compendiösen zu seyn. Doch es würde ermüden, wenn ich die ganze
Specialität der Rechnung hier wiedergeben wollte. Die Dimensionen selbst, welche
als Resultate schon im Capitel über die Construction angegeben wurden, mögen
genügen.
IV. Die Eigenschaften des
Concavglases.
Textabbildung Bd. 112, S. 350
Halten wir vor unser Auge eine Röhre von gegebener Länge mit gegebener
vorderer Oeffnung, so ist damit auch die Größe des Visionswinkels bestimmt.
Er ist nämlich (Fig. 9) gleich dem
Winkel an der Spitze jenes gleichschenkligen Dreieckes AOB, dessen Spitze O im Auge des Beobachters liegt, dessen Basis der größte
Durchmesser am Eingang der Röhre bildet. Ein Strahl, der von einem Punkte
x oder dem Gegenstande ab aus zum Auge ginge, wird bei
unveränderter Entfernung Ay, von dem
Mantel des Cylinders abgehalten, nicht mehr ins Auge gelangen können.
Textabbildung Bd. 112, S. 351
Stellen wir aber in der Oeffnung mn ein
Concavglas auf, so ändern sich diese Verhältnisse bedeutend. Es werden
nämlich (Fig. 10) Strahlen, welche von y und
x in der Richtung x
α und y
α ausgehen, und sich in α schneiden, in Folge jener Eigenschaft
des Concavglases alle Strahlen divergenter zu machen, jetzt einen Winkel mon bilden, und erst in o, das heißt im Auge des Beobachters zum
Durchschnitt kommen.
Man sieht leicht ein, daß für gegebene Verhältnisse des Cylinders das Concavglas
so gewählt werden kann, daß der Winkel, unter dem wir noch einen Gegenstand
sehen können, merklich vergrößert wird. Für unseren Fall ist, wie oben gezeigt,
der Winkel von 46° 30' 8'' auf 63° 26' 6'' abgeändert worden.
Die Construction unseres Instrumentes forderte ein Glas, das etwa zweimal
verkleinerte. Wir wählten ein solches von 7,02 Par. Zoll Krümmungsradius für
beide Seiten. Das Material aus dem es gefertigt, war Tafelglas von einem
Brechungsexponenten von 1,53. Diese Daten konnten uns hinreichen, mittelst
einiger optischer Formeln die Eigenschaften unseres Glases zu berechnen.
Suchen wir zuerst die Brennweite p aus dem
Brechungsexponenten n und dem Krümmungsradius r, so ist diese nach der Formel
p = r²/2r(n
– 1) = 6,62.
Am wichtigsten ist für uns die Verkleinerung; wir erhalten sie nach der
Formel
m = α(a + d)/a(d
– α),
wobei a die vordere, α die hintere Vereinigungsweite und d den Abstand des Glases vom Auge bedeutet. Das α aber und das a
sind veränderliche Größen; (p = aα/(a + α)); mit verschiedener Entfernung des
Gegenstandes vom Glase wird also auch seine Verkleinerung eine andere seyn; für
uns wird in diesem Falle auch die Größe der Visionsweite geändert werden. Doch
ist die Amplitude der Schwankungen verhältnißmäßig sehr gering; die Fehler
können bei dem Gebrauche leicht corrigirt werden; die folgende Tabelle zeigt die
Verhältnisse, nach welchen sich die Verkleinerung bei der Entfernung und beim
Nahen des Gegenstandes ändert.
Tabelle Nr. I.
a.Entfernungdes Gegenstandes.
α.HintereVereinigungsweite.
m.Verkleinerung.
5'
7,04''
1,25
10'
7,00''
1,28
20'
6,81''
1,30
40'
6,71''
1,31
60'
6,69''
1,31
80'
6,66''
1,31
100'
6,65''
1,31
200'
6,64''
1,32
300'
6,63''
1,32
400'
6,63''
1,32
500'
6,62''
1,32
∞
6,62''
1,32
Wir sehen aus dieser Tabelle, daß die erste Decimale fast durchgehende 1,3
ist.
Bei der großen Oeffnung der Concavlinse wird auch die sphärische Abweichung von
bedeutendem Einfluß seyn; doch ist dieser Umstand bei der Einstellung des
Instrumentes schon berücksichtigt worden; wir können uns daher die Rechnung
füglich ersparen.Aus der eben angeführten Tabelle geht hervor, daß der Fehler wegen der
nicht constanten Verkleinerung allein von der Entfernung vom Gegenstande
abhängt; er wird also merklich vermieden werden können, wenn wir die
kleineren Kreise bei der Messung von nahen Gegenständen gebrauchen, weil
in diesem Falle unter übrigens gleichen Umständen die Entfernungen vom
beobachteten Gegenstande bedeutend größer sind.
V. Aufgaben.
Eine praktische Anleitung zur Handhabung von Instrumenten mit constanten Winkeln
will ich erst nach der Beschreibung des Prismenporrhometers anfangen; fast alle
dort angeführten Methoden gelten auch für dieses Instrument. –
Eigenthümlich blieb aber diesem die Methode bei der Construction senkrechter
Linien; wir wollen sie hier etwas näher betrachten.
Construction der
Perpendikel.
Diese Operation zerfällt in zwei Gruppen, je nachdem wir uns auf die Linie, welche
einen Schenkel des rechten Winkels bilden soll, stellen können oder nicht.
I. Für den ersten Fall lösen sich die beiden Aufgaben:
a) von einem gegebenen Punkt eine
Senkrechte auf die Standlinie zu fällen;
b) in einem Punkt der Standlinie
ein Perpendikel zu errichten, auf folgende Weise:
a. Man hält das Instrument so, daß ein Durchmesser
desselben, gleichgültig welcher, mit der Linie ab
zusammenfalle, und ein zweiter Durchmesser (jener nämlich, der im Instrumente auf
dem ersten senkrecht steht) durch den Punkt x gehe. Wo
der Durchschnittspunkt der beiden Durchmesser die Linie ab trifft, ist der Fußpunkt des Perpendikels; xy ist aber das verlangte Perpendikel.
b. Soll man in dem Punkte y
ein Perpendikel errichten, so stellt man das Instrument so, daß ein Durchmesser auf
ab, der Mittelpunkt des Instrumentes d.h. der
Durchschnittspunkt der beiden Durchmesser auf y falle.
Jene Linie, welche vom zweiten Durchmesser y gedeckt
wird, ist die verlangte Senkrechte.
Beweis. Wir benützten bei dieser Operation jene beiden
auf einander senkrechten Ebenen, welche durch die beiden Durchmesser und unser Auge
gelegt werden können. Die eine dieser Ebenen wird so gestellt, daß zwei ihrer Punkte
mit der Standlinie, also auch mit der Ebene, auf welcher wir stehen, zusammenfallen;
der dritte fixe Punkt liegt in unserem Auge. Da aber unsere Stellung eine senkrechte
auf der als horizontal vorausgesetzten Ebene ist, so wird auch die neue fixirte
Visionsebene auf unserer Standebene senkrecht stehen. Wir haben nun zwei miteinander
einen rechten Winkel bildende Visionsebenen, welche von einer dritten, der
Standebene so geschnitten werden, daß diese auf einer der Visionsebenen senkrecht
steht. In diesem Falle müssen auch die Durchschnittslinien senkrecht auf einander
stehen. (Fig.
11.)
Textabbildung Bd. 112, S. 353
Denn: die Ebene BAP und die Standebene ss stehen nach Construction und Daten senkrecht
auf der zweiten Visionsebene Pz
A. Wenn eine Linie auf einer Ebene senkrecht steht, so
ist sie auch ein Perpendikel auf jeder Linie, welche in dieser Ebene durch ihren
Fußpunkt gezogen ist; also steht in unserem Falle BA senkrecht auf APz, mithin auch
senkrecht auf Az und AP.
II. Wir können oder wollen uns nicht auf die uns gegebene Linie
stellen.
Auch hier sind zwei Fälle zu unterscheiden:
a) Auf der Linie in einem
bestimmten Punkte ein Perpendikel zu errichten.
b) Auf dieselbe von einem Punkte
außer ihr ein Perpendikel zu fällen.
a. In einem Punkte einer Linie wird ein Perpendikel so
errichtet, daß wir den Mittelpunkt des Instrumentes auf den verlangten Punkt n richten, dann unsern Standpunkt verändern, bis uns die
gegebene Linie mit einem Durchmesser zusammenfällt, und der zweite Durchmesser in
die Richtung no falle. Dann ist no das geforderte Perpendikel.
b. Im zweiten Falle dürfen wir natürlich unsern
gegebenen Standpunkt nicht verlassen; wir richten unser Instrument ähnlich wie in
den schon beschriebenen Fällen; jener Punkt n der
Gegebenen Ab, welcher von dem Mittelpunkte unseres
Instrumentes bedeckt wird, ist der Fußpunkt unseres Perpendikels.
Beweis wie oben.
Textabbildung Bd. 112, S. 354
Wir können auch hie und da genöthigt seyn, ein Perpendikel auf eine Linie zu
fällen, welche nicht in unserer Standebene liegt. Dieser Fall wird besonders
wichtig, wenn die Ebene, auf welche das Perpendikel gefällt werden soll, eine
verticale ist. Wir haben zu diesem Zweck das Instrument so eingerichtet, daß es,
ungeachtet der bedeutend intensiveren Verkleinerung in geringen Entfernungen,
auf die mit 45° bezeichnete Marke eingestellt, bei Benützung des
mittleren Kreises auch dann noch einen Winkel von 45° bildet, wenn die
Katheten eines Dreieckes auch kaum 6' übertreffen. Wir setzen also diesen Winkel
zweimal an (Fig. 12), so haben wir einen Winkel von 90°; die Linie ox ist daher auf ab senkrecht.Bei dieser Aufgabe und fast bei allen übrigen, welche mit diesem
Instrumente ausgeführt werden, ist als constructive Bedingung verlangt,
zwei Punkte in die Peripherie eines Kreises zu nehmen.
Es ist dabei gemäß den Verhältnissen unseres Instrumentes vorausgesetzt,
daß die beiden Punkt sich diametral gegenüber liegen. Dieß können wir
nur dann mit Sicherheit erreichen, wenn die beiden Stellen, welche den
Gegenstand decken, die Durchschnittspunkte des betreffenden Kreises und
eines Durchmessers sind.
Resultate der Beobachtungen.
Bei allen meinen Beobachtungen mit diesem Instrumente habe ich gefunden, daß es den
Anforderungen der Genauigkeit genügend entspricht. Ich habe damit Bestimmungen unter
Umständen gemacht, welche mir erlaubten, die Resultate durch directe Messungen einer
genauen Prüfung zu unterwerfen, und dabei niemals bedeutende Differenzen gefunden.
Allein zwei Schwierigkeiten stellten sich beim Gebrauche desselben mir entgegen,
welche nur durch Uebung und jedesmalige Anstrengung des Auges überwunden werden
konnten.
Das eine hindernde Moment liegt in jener Einrichtung unseres Auges, welche es
unmöglich macht, einen nahen und einen fernen Gegenstand im selben Augenblick gleich
scharf zu sehen; nur den einen oder den andern, nicht beide zugleich können wir
fixiren. Wir haben aber in unserem Instrumente gerade diese Aufgabe zu lösen, wenn wir das Mikrometer und den Gegenstand hinter
demselben fixiren wollen. – Hindernd ist auch die große Nähe des Mikrometers
am Auge. Seine Entfernung beträgt nur 3 Par. Zoll, was hinter der deutlichen
Sehweite, die für gute Augen zu 8 bis 9 Zoll angenommen wird, weit zurückbleibt.
Ein anderer Fehler des Instrumentes könnte in der Parallaxe desselben gesucht werden,
allein er ist nicht bedeutend. Zwar ist das Bild, welches wir durch das Concavglas
sehen, von diesem 6 Par. Zoll entfernt (hintere Vereinigungsweite des Glases, siehe
oben); das Mikrometer steht aber hart am Concavglase, wir können daher die
Entfernung des Bildes auch vom Concavglase gleich 6 Zoll setzen. Daher kommt es nun,
daß sich Bild und Mikrometer verschieben, wenn das Auge nicht ganz im Centrum des
Ocularausschnittes steht. Allein nur bei absichtlicher Anstrengung des Auges, die
Parallaxe so groß als möglich zu erhalten, können wir diese bis auf 10 oder selbst
20' steigern; wenn wir aber das Auge nur einigermaßen richtig stellen, so ist der
Unterschied sehr unbedeutend. Als Beweis dafür darf ich wohl anführen, daß Hr. Dr. Merz, der mit mir die
Versuche des Einstellens mit dem Theodoliten machte, genau dieselben Gränzen für die
Visionswinkel wählte wie ich selbst.
Die früher erwähnten Nachtheile gelten ohnehin vor allem für fernsichtige Augen. Die
kurzsichtigen können sich weit leichter dem nahen Mikrometer accomodiren; das
Concavglas wird sie ferner bei der Betrachtung des entfernten Gegenstandes gleich
einer Brille unterstützen und die Schärfe des Einstellens für sie wesentlich
erleichtern.
(Der Beschluß folgt im nächsten Heft.)