Titel: Die Bemessung der Auslassteuerung der Dampfmaschinen auf Grund der Ausströmungsgesetze.
Autor: W. Schüle
Fundstelle: Band 320, Jahrgang 1905, S. 163
Download: XML
Die Bemessung der Auslassteuerung der Dampfmaschinen auf Grund der Ausströmungsgesetze. Von W. Schüle, Breslau. (Fortsetzung von S. 148 d. Bd.) Die Bemessung der Auslassteuerung der Dampfmaschinen auf Grund der Ausströmungsgesetze. Der Verlauf der Ausströmlinie während des Kolbenrückgangs auf grund der Gleichung 3). Wir gehen von dem Zustand im Totpunkt aus und nehmen an, dass der Ausströmkanal an dieser Stelle schon ganz geöffnet sei und bis + 90° Kurbelwinkel13) ganz offen bleibe. Von da ab soll er sich bis + 120° Kurbelwinkel der Zeit (dem Winkel φ) proportional schliessen (Fig. 13). Bei Exzenterantrieb ist diese Proportionalität oft sehr angenähert verwirklicht. Der allgemeinere Fall, wo der Kanal im Totpunkt noch nicht ganz offen ist oder wo er überhaupt nur einen Augenblik lang offen bleibt, um sogleich die Schlussbewegung zu beginnen, lässt sich ebenso leicht behandeln, es treten jedoch bestimmte Beziehungen bei obiger Annahme schärfer hervor.
[Textabbildung Bd. 320, S. 163]
Fig. 13.
Mit 7 v. H. schädl. Raum wird also xo + so = 1,07. Ferner wählen wir k = 0,40 (vgl. die Werte am Schluss) als reichlichen Mittelwert. Dann erhalten wir nach Gleichung V) logpipo=0,23u(φφa)fmF für den Verlauf ohne Rücksicht auf die Kolbenbewegung, und nach Gleichung 3) log(pipox+soxo+so)=0,23u(φφa)fmF für den wahren Verlauf der Ausströmlinie. Wir setzen ferner die hintere (äussere) Zylinderseite voraus, dann ergibt sich für rL=15 die reduzierte Oeffnungslinie f'. Die Werte fmF sind konstant und gleich 1, bis die Schlussbewegung beginnt. Von da ab sind sie f' durch einfache Rechnung zu ermitteln. Die Werte fmF sind durch Planimetrieren bestimmt. In Fig. 14 ist hiernach der Verlauf der Ausströmlinie für verschieden grosse Kontinuitätsgeschwindigkeiten u=OcmF eingezeichnet (u = 20 bis 100 m/sek.), sowohl ohne Rücksicht auf die Kolbenbewegung (gestrichelt), als auch der wirkliche Verlauf. Die Fortsetzung der Linien wird von den Kompressionslinien (Hyperbeln) gebildet, in die sie stetig übergehen. Als Anfangsspannung ist 1 kg/qcm (= 25 mm) angenommen. Für jede andere Anfangsspannung lässt sich die Ausströmlinie aus der Figur ableiten, indem man die Ordinaten der entsprechenden Linie im Verhältnis der wirklichen Anfangsspannung zu derjenigen der Figur vergrössert oder verkleinert. Folgende wichtige Beziehungen erkennt man aus Fig. 14. Bei 20 m/sek. Kontinuitätsgeschwindigkeit ist der Einfluss der Kolbenbewegung längs der gezeichneten Strecke gering und der Druck sinkt selbst bei der hohen Anfangsspannung von 1 kg/qcm ziemlich schnell auf 1,7 pa. Bei 30 m/sek. ist der Einfluss des Kolbens schon grösser und die Spannung sinkt überhaupt wesentlich langsamer. Bei 60 m/sek. ist die Kolbenbewegung von sehr bedeutendem Einfluss und der Druck sinkt überhaupt nur wenig. Bei 100 m/sek. sinkt der Druck fast gar nicht, sondern beginnt sogar kurz hinter dem Totpunkt zu steigen, und zwar etwa eben so rasch, wie er noch bei 60 m/sek. fiel. Es wird also hier, zum zweiten Male,14) die alte Regel bestätigt, dass die zulässigen Werte für u zwischen 20 und 40 m/sek. liegen. Die Figur lässt erkennen, dass Geschwindigkeiten von 100 m/sek. völlig unmöglich sind, da auch bei kleiner Totpunktspannung der Druck durch den Einfluss des zurückgehenden Kolbens wieder steigt. Es ist nun wohl zu beachten, dass das hier gewählte Beispiel den günstigsten Fall vorstellt. Sehr häufig lässt sich volle Kanalöffnung im Totpunkt nicht erreichen und ebensowenig ein so grosser Ueberhub, dass der Kanal so lange wie in Fig. 14 voll geöffnet bleibt. Dann wird der Druck entsprechend langsamer sinken und die jeweils zulässigen Grenzwerte von u werden tiefer liegen müssen, d.h. wesentlich näher an 20 m/sek. als an 40 m/sek., was auch ganz in Uebereinstimmung mit der Erfahrung steht. Bemerkenswert ist in Fig. 14 noch, dass der Beginn der eigentlichen Kompression in der Ausströmlinie selbst nicht zum Ausdruck kommt. Die Kompressionslinien erscheinen vielmehr auf eine beträchtliche Strecke nach rückwärts verlängert, und um so weiter, je grösser u ist. Man ersieht daraus, wie schwierig es ist, aus einem Dampfdiagramm zu entnehmen, bei welchem Kolbenweg der Auslass gerade abschliesst. Der Ort des tiefsten Punktes lässt sich auch ohne Integration der grundlegenden Differentialgleichung aus dieser selbst ermitteln, wie 1 im nächsten Abschnitt gezeigt wird.
Ueber die Höhe des Gegendrucks und die kritischen Werte der Durchflussgeschwindigkeiten. Aus Fig. 14 erkennt man, dass bei gegebenen Verhältnissen der Maschine und bestimmter Spannung im toten Punkt der kleinste Gegendruck, selbst ohne jede Rücksicht auf etwaige zusätzliche Widerstände durch lange Ausströmleitungen, nicht unter ein gewisses Mass sinken kann. Ist dieser kleinste Wert noch grösser als die 1,5fache (genau 1,7 fache) Kondensatorspannung, so kann er aus Gleichung 3) berechnet werden, wenn erst die Stelle bekannt ist, wo er auftritt. Was eintritt, wenn der Druck schon vor dieser Stelle kleiner als 1,7 pa geworden ist (bei Auspuffmaschinen), wird im folgenden ebenfalls zu erörtern sein.
[Textabbildung Bd. 320, S. 164]
Fig. 14.
An der Stelle des kleinsten Gegendrucks ist die Ausstromlinie horizontal gerichtet, es ist daher d(pipo)=0. Aus der allgemeinen, auch für das Niederdruckgebiet gültigen Differentialgleichung Gleichung 2) folgt nun, dass d(pipo)>0 ist, wenn ψ133axωOHfdφ+d(so+x)>0 ist. Durch Division mit = ω . dt wird ψ133,axOHf>d(so+x)dt. Da nun d(so+x)dt=dxdt=cxH 15) ist, worin cx die Kolbengeschwindigkeit beim Kolbenweg; x ist, so wird ψ133axfO>cx. Bezeichnen wir mit vx die augenblickliche Durchflussgeschwindigkeit (nach dem Kontinuitätsgesetz), so ist vx . f = cx . O, womit unsere Bedingungsgleichung übergeht in ψ133ax>vx . . . . . 4) Sobald also die Durchflussgeschwindigkeit diesen Wert überschreitet, fängt der Druck beim Kolbenrückgang an zu steigen. Verzeichnet man die vx als Ordinaten zu den Kolbenwegen als Abszissen (vergl. Taschenbuch „Hütte“), so kann man aus der Geschwindigkeitskurve die kritische Stelle (den Beginn der „scheinbaren Kompression“) ermitteln, wenn man die Grösse ψ . 133 αx kennt. Für die hohen Druckverhältnisse (Kondensation) ist ψ=1,921+\zetea, daher $$ψ133ax=256ax1+ζ=256k.$$ Die kritische Geschwindigkeit beträgt also vkr = 256 . k m/sek. . 5) Mit k = 0,4 ist also vkr = 102,4 m/sek., mit k = 0,6 vkr = 153,6 m/sek. Hiernach sind in Fig. 14 die kritischen Stellen bestimmt worden; sie fallen mit den tiefsten Punkten der schon früher ermittelten Ausströmlinien zusammen. Für die kleinen Druckverhältnisse (pipa < rd. 1,5 bis 1,7), also für Auspuffmaschinen allgemein und für Kondensationsbetrieb, falls der Ausströmdruck unter 1,5 . pc sinkt, wird mit ψ=6,31+ζpapipipa1pipa+1 838kpapipipa1pipa+1>vx, also vgr=838kpapipipa1pipa+1 . . . 6) Im Niederdruckgebiet gibt es also nicht, wie im Hochdruckgebiet, eine einzige, nur vom Ausflussfaktor k abhängige kritische Geschwindigkeit, sondern für jedes Verhältnis pipa ist der Wert ein anderer. Es ist für
pipa= 1,05 1,1 1,3 1,5 vkr = 124 . k 166 k 233 k 249 k
Bei pipa=1,5 ist der Unterschied vom Hochdruckgebiet noch gering, woraus man schliessen kann, dass, wenn nötig, das Hochdruckgebiet bis 1,5 pa herab (praktisch) ausgedehnt werden kann. Mit k = 0,4 werden die Werte vkr = ∾ 50 66 93 100 m/sek. Im Niederdruckgebiet hört also der Druck erst auf zu fallen, nachdem er so klein geworden ist, wie es die augenblicklich herrschende Durchflussgeschwindigkeit gemäss der Gleichung 6) erlaubt. Ist an einer bestimmten Stelle mit dem Verhältnis pipa der Ausdruck 838kpapipipa1pipa+1 kleiner als die Durchflussgeschwindigkeit an dieser Stelle, so sinkt der Druck weiter. Wir tragen nun, um einen Ueberblick zu gewinnen, für eine bestimmte Steuerung, Maschine IV, weiter hinten (Fig. 29), die Werte von vx als Ordinaten zu den Kolbenwegen als Abszissen auf. Zur Bestimmung von vx zeichnet man am besten, falls die Untersuchung öfter oder für verschiedene Verhältnisse anzustellen ist, die Geschwindigkeitskurven des Kurbelgetriebes ein- für allemal auf (rL=15) und kann dann leicht vx=Of berechnen. Nun bestimmen wir aus Gleichung 6) die zu vx gehörigen (kritischen) Werte von pipa. Nach pipa ist diese Gleichung vom dritten Grad, weshalb es bequemer ist, eine Kurve (Fig. 35) zu entwerfen, deren Abszissen pipa, deren Ordinaten gleich papipipa1pipa+1 sind. Diese Kurve kann benutzt werden, um den zu vx838k=papipipa1pipa+1 16) gehörigen Wert von pipa unmittelbar abzugreifen. In Fig. 15 sind nun die so erhaltenen Werte von Pi für Pa = 1 als Ordinaten zu den Kolbenwegen als Abszissen eingetragen, und zwar für verschiedene Grösse von u, wodurch die (schraffierten) Grenzkurven entstanden;17) diese gelten also für die gleiche Steuerung, jedoch für verschiedene Werte von u. In derselben Figur sind einige Diagrammlinien von den Dampfdiagrammen der Maschine IV hinten eingetragen. Man erkennt, dass die Grenzkurven die Diagrammlinien in der Nähe ihrer tiefsten Punkte treffen, womit die Richtigkeit der Gleichung 6) erwiesen ist.
[Textabbildung Bd. 320, S. 165]
Fig. 15.
Zu einer Maschine mit konstanter Geschwindigkeit gehört eine ganz bestimmte Grenzlinie. Aus dieser lässt sich, wenn der Verlauf der Ausströmlinie in der Nähe des Totpunktes bekannt ist (Gleichung 3) genau für das Hochdruckgebiet, Gleichung 1) genähert für das Niederdruckgebiet) entnehmen, wie tief der Druck höchstens sinken wird, indem man den Schnittpunkt der Ausströmlinie mit der Grenzlinie aufsucht. Man kann auch ermessen, um wie viel der Gegendruck ansteigt, wenn die Diagrammlinie infolge grösserer Anfangsspannung höher rückt. – Der Einfluss von u ist sehr bedeutend. Bei u = 40 m/sek., k = 0,4 sind, wie sich aus Fig. 15 abschätzen lässt, auch bei kleinen Spannungen im Totpunkt erhebliche Werte des kleinsten Gegendrucks zu erwarten.18) Die Steuerungsverhältnisse sind jedoch besonders ungünstige, sehr hohe Kompression und frühzeitiger Beginn der Schlussbewegung. Für Kondensationsmaschinen sind diese Betrachtungen von geringerer Bedeutung, da man die Ausströmlinie in den meisten Fällen ihrem ganzen Verlauf nach gemäss Gleichung 3) berechnen kann, woraus sich ganz von selbst auch die Grösse und der Ort des kleinsten Gegendruckes ergibt. Für Auspuffmaschinen ist dies anders, da nur der Druckabfall ohne Rücksicht auf die Kolbenbewegung nach Gleichung 1) berechnet werden kann. Die Gleichung 2) lässt sich eben für das Niederdruckgebiet nicht integrieren. In diesem Fall kann die „Grenzkurve“ wertvolle Anhaltspunkte bieten.
Vergleich der entwickelten Formeln mit Diagrammen von Dampfmaschinen und Ableitung der Ausflusskoeffizienten für die verschiedenen Bauarten aus Versuchen. Die im Vorangehenden aufgestellte Theorie der Dampfausströmung aus Dampfzylindern bedarf wie jede der Prüfung durch Vergleich mit wirklichen Verhältnissen. Wenn auch die allgemeine Uebereinstimmung kaum eine Frage ist, da sie sich auf Grund der bekannten Erfahrungen an den Dampfmaschinen von selbst ergibt, so kommt es doch hier ganz besonders auf den Grad der Uebereinstimmung an, da aus blossen groben Annäherungen oder aus idealen Verhältnissen nicht allzuviel Nutzen zu ziehen wäre. Es ist ferner zu bedenken, dass keine oder nur unzureichende Versuche vorliegen, aus denen die Durchgangswiderstände von Wasserdampf durch Rohrventile, Flachschieber, Kolbenschieber und Drehschieber, durch mehr oder weniger gewundene oder scharf gekrümmte Kanäle, durch Kanäle, die an verschiedenen Stellen des Ausflussgefässes, in verschiedenen Richtungen ansetzen, zu entnehmen wäre.19) Für Wasser im flüssigen Zustand besteht allerdings eine ganze Reihe hydraulischer Versuche, insbesondere von Weisbach; aber die Uebertragung der Ergebnisse auf Wasserdampf dürfte erheblichen Einwänden begegnen, weshalb an dieser Stelle ganz darauf verzichtet wird. Am sichersten ist es, die Dampfmaschine selbst zu benutzen und die Koeffizienten auf Grund der obigen Formeln aus den Dampfdiagrammen abzuleiten. Hierzu soll das Folgende einen Beitrag liefern. Die gleich einfache Anwendbarkeit der Formeln auf die allerverschiedensten Antriebsverhältnisse und Auslassorgane werden die folgenden Beispiele zeigen und ihre Richtigkeit wird erwiesen sein, wenn für den Durchflussfaktor k an verschiedenen Stellen der wirklichen Ausströmlinien und aus Versuchen an der gleichen Maschine unter veränderten Verhältnissen sich gleiche Werte ergeben. Sind endlich solche Werte in genügender Zahl und aus zuverlässigen Versuchen ermittelt, so wird die Wirkung einer bestimmten Auslassteuerung auf Grund der entwickelten Beziehungen mit hinreichender Sicherheit vorausbestimmt werden können. Letzteres war das von Anfang an vom Verfasser angestrebte Ziel. Die Grössen, die zur Bestimmung des Ausflusskoeffizienten aus dem Druckverlauf bei der Ausströmung bekannt sein müssen, finden sich im I. Teil zusammengestellt. Da es sich also um sehr eingehende Versuche und dabei um die verschiedensten Steuerungsorgane handelt, so ist klar, dass von dem Verfasser, dem auch zu diesem Zwecke die Gelegenheit fehlt, nicht alle erforderlichen Versuche selbst angestellt werden konnten. Ausser einigen eigenen Versuchen an Ventilmaschinen mussten daher solche Versuche aus der Literatur herangezogen werden, die sich für den vorliegenden Zweck als geeignet erwiesen. Die im folgenden behandelten Versuche sind: I. Versuche an einer Wolffschen Verbund-Lokomobile von 60 bis 70 PS mit Kondensation. „Zeitschr. d. Ver. deutsch. Ing.“, 1888 (S. 772 und Tafel XXIX). Steuerung am Niederdruckzylinder: Flachschieber mit Trickschem Einströmkanal. II. Versuche an einer Einzylinder-Corliss-Maschine von R. Dörfel. „Zeitschr. d. Ver. deutsch. Ing.“, 1889 (S. 1065 und Tafel XXXIX). Auslassteuerung mit Drehschieber, Antrieb derselben durch Exzenter und Kulisse. Versuche mit Mantelheizung, ohne Mantelheizung, mit Wassereinspritzung in die Dampfleitung. – Zwei verschieden grosse Kompressionsgrade. III. Versuch an einer Einzylinderkondensationsmaschine mit Sulzer-Ventilsteuerung. Auslassventile durch unrunde Scheiben gesteuert, a) mit Nassdampf, b) mit überhitztem Dampf; mit gewöhnlichen Dampfdiagrammen und Falldiagrammen. – (Vom Verfasser.) IV. Versuche von L. C. Wolff an einer kleinen Auspuffmaschine mit Muschelschiebersteuerung. „Zeitschr. d. Ver. deutsch. Ing.“, 1901, S. 1772 unter dem Titel: „Zur Genauigkeit der Indikatordiagramme.“ – Tourenzahlen von 150 bis 1000 i. d. Min. V. Versuch an einer Einzylinder-Auspuffmaschine mit Sulzersteuerung. Antrieb der Auslassventile durch unrunde Scheiben. – (Vom Verfasser.) In diesen Beispielen sind somit die wichtigsten Antriebsarten (reiner Exzenterantrieb bei I und IV, durch Kulisse abgeänderter Exzenterantrieb bei II, unrunde Scheibe bei III und V) und auch die verschiedensten Auslassorgane (Flachschieber bei I und IV, Ventile bei III und V, Hahnschieber bei II; dagegen kein Kolbenschieber) vertreten. Es ist klar, dass die vervielfältigten Diagramme auch im besten Falle nicht so genau sein können wie Originaldiagramme. Dies erwies sich jedoch als kein unbedingter Hinderungsgrund; es war in allen folgenden Fällen dank der guten Uebertragung hinreichende Uebereinstimmung zu erzielen. Die Steuerung war in Hinsicht ihrer Abmessungen nur in den Fällen II und IV ziemlich vollständig gegeben. In den anderen Fällen mussten die Dampfdiagramme teilweise herangezogen werden, um fehlende Grössen zu ergänzen. (Fortsetzung folgt.)