Titel: | Ueber ein neues Instrument zur Bestimmung der Wassergeschwindigkeit. |
Autor: | Wilh. Müller |
Fundstelle: | Band 304, Jahrgang 1897, S. 8 |
Download: | XML |
Ueber ein neues Instrument zur Bestimmung der Wassergeschwindigkeit.
Mit Abbildung.
Ueber ein neues Instrument zur Bestimmung der Wassergeschwindigkeit.
Castelli, ein Schüler Galilei's, welcher mit Toricelli die ersten Grundlagen der Hydrodynamik (etwa um 1640) behandelt, legt dem berühmten Gelehrten in seiner Schrift:
Dellamisura
dell' acque correnti, die Worte in den Mund: „Ich habe weniger Schwierigkeiten in der Entdeckung der Bewegung der
Himmelskörper gefunden, ungeachtet ihrer erstaunlichen Entfernung, als in den Untersuchungen über die Bewegung des
fliessenden
Wassers, welche doch unter unseren Augen vorgeht.“ Trotzdem dieser Ausspruch mehr als 2 ½ Jahrhunderte alt ist, könnte ihn der
Altmeister mit geringer Einschränkung erst gestern gethan haben, ohne dessen Richtigkeit zu beeinträchtigen.
Nach dem Stand der heutigen Hydrodynamik sind wir trotz einer grossen Zahl von Formeln zur Berechnung des in einer Zeiteinheit
in
Kanälen oder Flüssen strömenden Wassers und ferner ungeachtet der im Gebrauch befindlichen Messwerkzeuge zur Bestimmung
der
Wassergeschwindigkeit nicht in der Lage, eine Wassermenge mit vollkommener Schärfe angeben zu können. Grössere Genauigkeit
als bis auf
4 Proc. wird ein gewissenhafter Hydrauliker bei seinen Messungen wohl kaum zusichern dürfen, daher jeder Fortschritt
auf diesem
Gebiet, jede Verbesserung in dieser Richtung anerkennend begrüsst werden darf.
Zur Bestimmung der in der Secunde abströmenden Wassermenge bedient man sich bei massigen Quantitäten der Ueberfälle und der
Schützenmündungen. Die Geschwindigkeit eines Stromprofils in Kanälen und Flüssen wird durch Tachometer gemessen,
deren Zuverlässigkeit
sehr verschieden ist.
Zu den gebräuchlichsten Formeln, welche bei Messungen mit Ueberfällen angewendet werden, zählt unter anderen die Weisbach'sche; gegen ihre allgemeine Anwendbarkeit sind jedoch wiederholt Bedenken erhoben worden, weil
sie sich auf Versuche mit verhältnissmässig zu geringen Ueberfallbreiten stützt. Der amerikanische Civilingenieur
Francis gelangte, von der Weisbach'schen Gleichung ausgehend, zu einer
Erfahrungs-Formel für die secundliche, in englischen Cubikfuss ausgedrückte Wassermenge Q:
Q=3,33\,(b-0,1\,.\,n\,H)\,H^{\frac{3}{2}}
worin n die Zahl der Seitencontractionen (also bei Poncelet-Ueberfällen = 2) ist.
Für eine allgemeine Anwendung ist die Francis-Formel schon deshalb nicht brauchbar, weil sie für b = 0,1
. n H die Wassermenge Q = 0 gibt.M. Rühlmann, Hydrodynamik.
Hannover.
Die Formel von Braschmann soll für Druckhöhen über 0,10 m Verwendung finden, aber nur bei vollkommenen
Ueberfällen in dünner Wand oder mit stromabwärts geschrägter Kante anwendbar sein. Als ein Hauptfehler dieser Formel
ist jedenfalls
der Umstand zu bezeichnen, dass sie die Höhe des Ueberfalles unberücksichtigt lässt.
Die neuesten Versuche in dieser Richtung sind diejenigen von Hansen in der Zeitschrift des Vereins deutscher Ingenieure, 1892 Bd. 36, welche jedoch nur mit Ueberfällen ohne Seitencontraction
angestellt wurden.
Bei dem Ausfluss des Wassers durch Mündungen unter einer bestimmten Druckhöhe kommen die Contractionscoëfficienten von Poncelet und Lesbros und diejenigen von Darcy
und Bazin zur Anwendung. Die Zuverlässigkeit des Ergebnisses hängt jedoch von so mancherlei Factoren ab,
dass auch diese Messungsart keinen Anspruch auf grosse Zuverlässigkeit machen kann, besonders auch deshalb nicht,
weil die in der
Praxis vorkommenden Verhältnisse zu sehr von denjenigen abweichen, für welche die Coëfficienten Gültigkeit haben.
Bei den Tachometern kann man zwei Gattungen unterscheiden; eine solche, bei der schwimmende Körper der Strömung des Wassers
frei
überlassen werden, sogenannte Schwimmer, diese nehmen die Geschwindigkeit des Wassers an, dem sie
übergeben sind. Bei der zweiten Gattung wird die statische oder mechanische Wirkung des Wassers zur
Bestimmung der Wassergeschwindigkeit benutzt. Ein Hauptübelstand der Schwimmer ist, dass sie nur im Stromstrich sich
regelmässig
fortbewegen, dagegen an den Seitenwänden des Kanales nicht mit entsprechender Regelmässigkeit gehen; auch macht man
dabei die
Voraussetzung, dass der Schwimmer eine gleichförmige Bewegung hat, was nicht immer der Fall ist. Die mit dem Schwimmer
gemessene
grösste Stromschnelle ist durch Rechnung richtig zu stellen, da die Geschwindigkeit von der Oberfläche nach dem Boden
und den
Seitenwänden annähernd um 17 Proc. abnimmt, so dass die mittlere Geschwindigkeit innerhalb einer in der Stromrichtung
stehenden
senkrechten Ebene nahezu 8,5 Proc. kleiner ist als die an der Oberfläche.
Es ist unverkennbar, dass von der Oberfläche nach dem Boden hin eine Abnahme der Geschwindigkeiten stattfindet, dieselbe ist
aber nicht
stetig, sondern wird durch vorkommende Wirbel und Gegenströme beeinträchtigt, so dass die Messungen selten eine gesetzmässige
Curve
als Geschwindigkeitsscala ergeben. Die Parabeltheorie wird in ihrer Anwendung auf die Wasserbewegung wohl kaum aufrecht
zu erhalten
sein; wir sind deshalb darauf angewiesen, die Geschwindigkeiten in möglichst vielen Punkten des Stromprofils zu bestimmen
und unter
der Voraussetzung, dass der Beharrungszustand der Bewegung eingetreten ist, die Wassermenge, welche in der Secunde
durch ein
bestimmtes Fluss- oder Kanalprofil fliesst, in der Weise zu berechnen, dass man den Querschnitt Δ, in dem gemessen
wurde, mit der
entsprechenden Geschwindigkeit u multiplicirt und die Producte addirt. Hieraus ergibt sich die
Gleichung:
Q = Σ (Δ u).
Dividirt man Q durch den Flächeninhalt (□) des Profils, so wird der Quotient die
mittlere Geschwindigkeit des ganzen Profils sein, die, obwohl in Wirklichkeit nicht vorhanden, für die Berechnung
die Grundlage
bildet.
Bezeichnet man die mittlere Profilgeschwindigkeit mit υ, so erhält man:
v=\frac{Q}{\square}
und
Q = □ . υ
oder
v=\frac{\Sigma\,(\Delta\,u)}{\square}.
1) Um die Stromprofile nicht in kleine Flächenstücke theilen und für jedes derselben eine Geschwindigkeitsmessung vornehmen
zu müssen,
zerlegt man die aufgenommene Profilfläche durch senkrechte und wagerechte Linien in Felder, welche mit Rücksicht
auf die
Breitenausdehnung derart bestimmt werden, dass Rechtecke von annähernd gleichen Seiten entstehen, bestimmt die mittlere
Geschwindigkeit in jeder dieser Perpendikularen, berechnet den Flächeninhalt derselben, multiplicirt die Werthe mit
einander und
dividirt die Summe durch den Flächeninhalt des Profils; als Resultat erhält man dann die mittlere Geschwindigkeit
desselben.
2) Man kann auch die mittlere Geschwindigkeit der einzelnen Senkrechten addiren, die Summe durch die Anzahl der Senkrechten
dividiren und den Quotient als mittlere Geschwindigkeit der Profilfläche betrachten.
3) Prof. Rühlmann empfiehlt, mit Hilfe der Simpson'schen Regel aus den
Tiefenmessungen den Flächeninhalt des Profils zu berechnen und mit der mittleren Perpendikulargeschwindigkeit zu
multipliciren. Diese
Methode wurde auch von Prof. Schröter bei Untersuchung der 240pferdigen Jonval-Turbinen der Nähfadenfabrik Göggingen angewendet.Zeitschrift des Vereins deutscher
Ingenieure, 1892.
Von sämmtlichen im Gebrauch befindlichen Instrumenten zu Geschwindigkeitsmessungen haben sich ausser den Schwimmern nur der
Woltmann'sche Flügel und die Pitot'sche Röhre als brauchbar erwiesen. Durch
Prof. Amsler-Laffon ist ersterer wesentlich verbessert worden.
Bei jeder Beobachtung muss der Flügel aus dem Wasser gehoben werden, um die in einer bestimmten Zeiteinheit ausgeführten
Flügelumdrehungen abzulesen; dieser Umstand verzögert die Messungen und führt zu Beobachtungsfehlern. Um solche zu
vermeiden, ist ein
elektromagnetischer Signalapparat beigefügt worden, welcher nach je 100 Umdrehungen der Flügelwelle ein Glockenzeichen
gibt. In
gleicher Weise zeigen neuere Instrumente die vollzogene Umdrehungszahl durch Schallübertragung] an. Bei dem hydrometrischen
Flügel
hängt die Genauigkeit der Messung vorzugsweise von der Tarirung des Instrumentes ab; dieselbe ist so oft als möglich
zu wiederholen
und kann nur in Versuchsanstalten in vollkommener Weise ausgeführt werden.Hydraulische Observatorien befinden sich in Freiberg, München,
Stuttgart, Schaffhausen, Gotha u.s.w. Als nachtheilig ist zu bezeichnen, dass der Coëfficient in der Formel des
Flügels mit den Geschwindigkeiten veränderlich ist.Vgl. Dr. M. Schmidt: Eine neue Form der Gleichung des Woltmann'schen Flügels. Deutsche Bauzeitung, Jahrg. XXIX Nr.
32.
Bei Wassermessungen zur Feststellung des Güteverhältnisses hydraulischer Motoren sollten nur Instrumente angewendet werden,
welche
unmittelbar vor oder nach den Versuchen tarirt sind; in gleicher Weise empfiehlt sich, mindestens zwei Flügel zu
gebrauchen, um eine
Controle über die Zuverlässigkeit der Beobachtungen zu haben.
Textabbildung Bd. 304, S. 10
Hydrometrische Röhre von Frank.
Um neben den Geschwindigkeitsmessungen nicht auch noch Zeitbeobachtungen machen zu müssen, hat die Pitot'sche RöhreVgl. auch 1897 303 * 67. den weiteren Vortheil, mit ihr an den Wänden der
Kanäle oder nahe dem Boden arbeiten zu können. Das Instrument besteht aus zwei Röhren, von welchen gleichzeitig die eine Mündung
der Strömung zugekehrt ist, während die andere in der Richtung derselben liegt; berücksichtigt man den Unterschied
der Höhenlage
beider Wassersäulen, welche sich in den Röhren einstellen, so kann mit Hilfe von Gleichungen die Geschwindigkeit
berechnet werden.
Auf diesem Princip beruht die neue hydrometrische Röhre (D. R. P. Nr. 77108) des Bez.-Ingenieurs A. Frank, über welche wir in Nachstehendem nähere Angaben machen.
Das Instrument hat den Zweck, die mittlere Geschwindigkeit einer Stromverticalen mit einer einzigen
Beobachtung zu bestimmen. Sie beruht auf dem Princip der Messung des mittleren hydraulischen Druckes. Letzterer bildet
sich in dem
gelochten Rohr R1, sobald dasselbe mit den Löchern dem Strom
entgegengestellt wird, und bewirkt das Aufsteigen des Wassers im Innern der Röhre über den äusseren Wasserspiegel
um eine gewisse
Höhe, welche dem mittleren Geschwindigkeitsdruck entspricht. Dieselbe wird in dem Manometer M gemessen,
in welchem beide Wasserspiegel, der innere und äussere, in die Höhe gezogen werden, so dass ihre Differenz, unmittelbar
als
Geschwindigkeit ausgedrückt, abgelesen werden kann.
Beschreibung und Gebrauch.
Auf dem gelochten Rohr R1 lässt sich ein kurzes Rohrstück R2 verschieben, welches an seinem unteren Ende gegen R1 durch eine Stopfbüchse gedichtet ist; dasselbe wird nach Einstellen
des Instrumentes in den Strom mittels der Schubstange S und deren Klemmen so gestellt, dass die
Stopfbüchse noch 8 bis 10 cm unter den Wasserspiegel kommt. Ein den Löchern genau gegenüber angebrachtes Steuerruder
sorgt dafür, dass
die Löcher stets dem Strom entgegengerichtet sind. Das nun im Innern von R1 über den äusseren Wasserspiegel aufsteigende Wasser tritt durch die Löcher von R1 in den Zwischenraum zwischen R1 und R2 und in das mit diesem communicirende Röhrchen R3. Dem letzteren gegenüber ist ein in seinem unteren Ende geschlitztes Röhrchen R4 angeordnet, in welchem sich das Wasser auf die Höhe des äusseren
Wasserspiegels einstellt. Die beiden Wasserspiegel in R3 und R4, der hydrodynamische und hydrostatische, werden nun durch Aussaugen
der Luft aus dem Manometer M durch die beiden Schläuche E1 und E2 in dem letzteren in die Höhe
gezogen und ihre Differenz hier messbar.
Das Manometer besteht aus zwei in einander gesteckten Glasröhren, deren innere durch den Schlauch E1 mit R3 (bezieh. R2 und R1) in Verbindung steht, während die äussere bezieh. der Zwischenraum zwischen beiden durch den Schlauch
E2 mit R4 in Verbindung gebracht wird. In der inneren Glasröhre befindet sich ein Schwimmer mit Scala. Derselbe ist so belastet,
dass der oben liegende Nullpunkt der Scala genau mit dem Wasserspiegel zusammenfällt. Der Schwimmer geht nun nach
Emporziehen der
beiden Wasserspiegel mit dem inneren (höheren) und macht dessen Schwankungen mit, während der äussere (tiefere) Wasserspiegel
an der
Scala die Differenz beider Wasserspiegel bezieh. die mittlere Geschwindigkeit anzeigt. Selbstverständlich muss hierbei
durch Aussaugen
oder Einlassen von Luft mittels des Hahnes H dafür gesorgt werden, dass der Schwimmer weder unten
aufsitzt, noch oben ansteht, sondern frei schwimmt.
Die Anordnung des Manometers mit schwimmender Scala hat den wesentlichen Vortheil, dass nur ein Wasserspiegel, nämlich der
äussere, beobachtet zu werden braucht; der Beobachter kann in Folge dessen seine ganze Aufmerksamkeit diesem zuwenden
und die
Schwankungen desselben leicht verfolgen und ausmitteln.
Das an den Röhren zu befestigende Manometer gestattet eine directe Ablesung von 0,1 bis 2,2 m in der Secunde. Manometer für
Geschwindigkeiten bis und über 3 m in der Secunde sind mittels Dreifuss und verlängerten Schläuchen seitlich aufzustellen.
Jedem
Instrument ist ein Steuer, mittels dessen sich die Röhre von selbst nach der Stromrichtung einstellt, und eine Handsaugpumpe
zum
Heraufziehen der Wassersäule beigegeben. Die Glasröhren sind von Jenaer Verbundglas, die Schwimmer von Aluminium
und der
Schubmechanismus von Metall ausgeführt. Sämmtliche Instrumente gestatten natürlich auch Messungen geringer Wassertiefen.
Das neue Instrument bietet gegenüber dem Flügel die folgenden Vortheile:
a) Die Beobachtung der Zeit und die hieraus entspringenden Fehler fallen weg.
b) Die einmal durch Prüfung bestimmte Constante des Instruments bezieh. dessen Scala bleibt unverändert, da sich keine beweglichen,
der
Veränderung oder Abnutzung unterworfenen Theile an ihm befinden. (Bei dem Flügel genügt oft ein leichtes Anstossen
mit dem Flügelrad,
um eine Aenderung der Coëfficienten und damit Messungsfehler zu veranlassen.) Es kann höchstens eine Glasröhre zerbrochen
werden; bei
der getroffenen Einrichtung des Manometers kann aber leicht eine stets als Reserve mitzuführende Glasröhre an Ort
und Stelle
eingezogen werden; die Angabe des Instruments ändert sich hierdurch nicht.
c) Die Handhabung des Instruments ist höchst einfach und bequem; alle Nebenapparate kommen in Wegfall.
d) Jede Rechnung entfällt, da das Instrument sofort die mittlere Geschwindigkeit angibt.
e) Die Messung geht viel rascher von statten als beim Flügel; dies ist um so mehr der Fall, je grösser die Tiefen sind, in
denen zu
messen ist, weil dann mit dem Flügel entsprechend mehr Einzelbeobachtungen in den verschiedenen Tiefen zu machen
sind, während man mit
der Röhre immer nur eine Beobachtung nöthig hat, gleichviel wie gross die Tiefe ist.
Das Instrument eignet sich daher besonders für Messungen, die nicht lange andauern dürfen, wie bei Bremsungen von Wassermotoren,
bei
welch letzteren dann auch sicher zusammengehörige Werthe der Wassermessung und der Arbeitsmessung erhalten werden.
Das neue Instrument wird somit für alle Arten von Wassermessungen in Kanälen, Flüssen und Strömen mit Vortheil zu verwenden
sein.
Wilh. Müller-Cannstatt.